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F
or centuries, physical imaging tools have
been opening new frontiers in biology. The
discovery of the cell nucleus by Scottish
botanist Robert Brown was made possible
by early-19th-century light microscopes,

and DNA was unveiled by mid-20th-century x-ray
diffraction imaging.

During his observations in the 1820s, Brown
made another discovery, which has come to bear his
name. He was startled to see the jittering, lifelike
motion of small particles enclosed in pollen grains.
He used control experiments with dust particles to
rule out the notion that the movers had to be living
“animalcules.” In the early 20th century, Brownian
motion became the subject of theoretical investiga-
tions by Albert Einstein, Paul Langevin, Marian
Smoluchowski, and others.

Following single molecules
Now once again, another connection between biol-
ogy and physics is being forged, this time by a new
imaging technique called single-molecule spec-
troscopy.1 Tracking individual molecules or small
tracer particles in living cells yields insight into the
molecular pathways that underlie cellular regula-
tion, signaling, and gene expression. Researchers

may soon be able to follow the trajectory of an indi-
vidual messenger RNA molecule from its produc-
tion—by the transcription of a sequence encoded in
a specific gene on the cell’s DNA—to its conversion
into a protein by a ribosome. Although some indi-
vidual proteins are too small to follow by single-
molecule tracking, certain proteins that occur in ex-
tremely low concentrations could be followed by
molecular buoys that emit light when the proteins
temporarily dock at them.

The light emitted from a single molecule mov-
ing through a living cell is just one example of dy-
namics in complex animate or inanimate systems in
which one encounters complicated time variation of
observables. Usually there’s little hope of determin-
ing those variations in detail, except for some aver-
aged features. Such averages are usually taken over
suitable ensembles: One observes many molecules
and averages the results. But in single-molecule ex-
periments, one observes the same particle for a long
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The irreproducibility of time-averaged observables in living cells
poses fundamental questions for statistical mechanics and

reshapes our views on cell biology.
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Outline

• Strong anomalous diffusion.

• Active transport in live cell (experiment).

• Lévy walk model.

• Non-normalizable infinite densities.
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Strong Anomalous Diffusion

〈|x(t)|q〉 ∼ tqν(q), ν(q) 6= const

• Brownian motion ν(q) = 1/2.

• Mono-scaling theories are not sufficient or invalid

P (x, t) 6= t−νf(x/tν).
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Bi-Linear spectrum, Physical Examples

qν(q) ∼





c1q q < qc

c2q − c3 q > qc

• Transport in two dimensional incompressible velocity fields (Vulpiani).

• Deterministic transport in intermittent maps (Artuso and Cristadoro).

• Lorentz gas with infinite horizon (AC, Ott, Zaslavsky).

• Diffusion of cold atoms in optical lattices (Barkai, Lutz)

• Active transport in living cells (Weihs)

• Lévy walks a stochastic framework.
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Questions

• Is dual scaling an asymptotic property?

• Can we describe the diffusive/ballistic packet?

• Go beyond central limit theorem?

• Introduce an infinite density.
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Sub-micron particle in live cell (Weihs)

• Single particle tracking reveals super diffusion 〈X2(t)〉 ∼ t4/3.

• Deplete ATP get normal diffusion.

• In this sense the process is called active transport.

• Motion characterized by local confinement separated by active flights.
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Scale 50nm

verted, epifluorescence Olympus IX81 microscope, using a
x100/1.4 NA DIC oil-immersion objective. Particle motion
within cells was recorded at 24 frames/s using an Infinity
3-1M charge coupled device !CCD" camera !Lumenera" at a
final magnification of 64.5-nm/pixel. No external forces were
applied to the particles and cells and thus motion was driven
by a combination of thermal fluctuations and natural active
processes in the cells. For each particle type, 20–30 cells and
over 200 particles were averaged. Frame-by-frame analysis
of particle motion was done in MATLAB 2007b !Mathworks
Inc.", using specialized algorithms that provide subpixel res-
olution of the time-dependent particle locations #4$; those are
partially based on previously suggested algorithms #29$. Par-
ticle trajectories provided the time-dependent MSD for
single particles as well as the ensemble.

The logarithmic slope of the MSD plot, ! or "!2", pro-
vided an initial indication of particle dynamics within the
cells. Ensemble averaged particle motion exhibited logarith-
mic slopes of !=1.25#0.01, up to lag times of %3 s, in-
dicative of active transport in the cells !Fig. 2". Particle mo-
tion in controls of glycerol-water mixtures demonstrated
!%1. Moreover, following adenosine triphosphate !ATP"
depletion, active transport in cells was reduced, and !%1
was observed. Both those controls indicate that the superdif-
fusion observed in the untreated cells is likely driven by
active cellular transport. Particle speeds at short lag times, as
calculated between successive frames, were %360 nm /s on
average, within the range of molecular motor mediated mo-
tion at those time scales #30$. Active motion of internalized
particles has been well established and several examples ex-
ist; that motion is associated with either direct coupling to
motor proteins #2$ or with nonthermal fluctuations of the
cytoskeletal network #6,31$. Several parameters affect the
value of !, among them are structure and density of the

intracellular matrix, lag time, and particles size and surface
chemistry. The MSD scaling exponent of 1.25 obtained here
is similar to that previously reported in 100–200 nm endo-
somes in the human malignant epithelial HeLa cells #32$.
Slopes of %1.5 were reported in a number of cell types from
animal source #2,5,6,31$. Naturally, the observed MSD and
its logarithmic slope depend on specifics of cell structure and
type, where, for example, in stiff yeast cells !%0.75 has
been observed over a wide lag-time range #33$. In a recent
work on Dictyostelium cells, an exponent of %1.4 was found
for a range of particle sizes #10$. However, in mammalian
cells, smaller particles reduced the MSD scaling exponent
#34$. Particles larger than a characteristic pore size become
entrapped by the network, thus their motion requires an ac-
tive force; smaller particles, which are not completely en-
trapped, can diffuse within the mesh in addition to the active
transport. The MSD observed here is in line with previous
literature, however the main result of this Rapid Communi-
cation is found in different displacement moments.

Moments of the ensemble-averaged two-dimensional dis-
placements were plotted for various moment orders q. For
each q value, the logarithmic slope of the lag-time dependent
qth moment provided a scaling exponent "!q". Figure 3
shows the scaling exponents, "!q", as a function of the mo-
ment order q. Fit ranges began at the minimal rate of 1/24 s
and extended at least one logarithmic time decade; upper
lag-time limit for each particle type was determined by the
higher moment orders, where data became noisier. For all
particle sizes and surface chemistries, scaling exponents ex-
hibited a piecewise-linear function of q #Fig. 3!a"$. The ob-
served functional form was

"!q" = & A1q q $ qc

A2q − B2 q % qc.
'

Fit parameters are presented in Table I. Motion of all particle
types fit that nondecreasing nonlinear form and displayed
"!2"%1, satisfying the conditions for strong anomalous dif-

FIG. 1. !Color online" Human epithelial breast-cancer cells with
internalized 200 nm particles. !a" Particles distributed within the
cytoplasm of living cells. !b" Colocalization of live-stain membrane
dye !green diffuse background" and internalized 200 nm carboxyl-
coated particles !red, bright dots" indicates particle encapsulation in
vesicles !arrows". Cells were fixed before imaging. Many particles
but not all of them were encapsulated. Scale bars are 15 &m.

FIG. 2. Ensemble-averaged MSD of all particles in the cells.
Markers are ! 100 nm carboxyl particles, ! 100 nm PEG par-
ticles, ! 200 nm carboxyl particles, and " 200 nm PEG particles.
Line indicates logarithmic slope of 1.25. Inset: representative tra-
jectory, demonstrating subballistic flights between local confined
regimes. Scalebar: 50 nm.
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fusion !20". At low moment orders, up to a critical value of
qc=1.5, slopes of the scaling exponents were #0.58 for all
particle types and fits passed through the origin $Table I%.
Thus, at those moments a single exponent fully characterizes
the anomalous transport process, as indicated by the constant

!$q% /q. The slopes !$q% /q observed here are qualitatively
and quantitatively similar to simulations in physical systems
!20–22". At higher moment orders, !$q% of the different par-
ticles varied from 0.73 to 0.84 $Table I%; here fits did not pass
through the origin, and !$q% /q was not constant. Slopes and
intercepts of !$q% at higher moment orders were particle-type
dependent. Larger particles and biologically inert PEG-
coated particles resulted in higher slopes, indicating more
active transport.

We have validated that the piecewise-linear form of the
scaling exponents results from rare active transport events in
the cells. Occasional large displacements outstand from the
common smaller ones as demonstrated in the inset of Fig.
3$b%. Larger displacements were excluded using a cutoff of
three standard deviations away from the mean; those
amounted to less than 2% of the trajectory steps for all par-
ticle types. The scaling exponents of the remaining data !Fig.
3$b%" became linear with all q values. The single slope ob-
tained following data filtration was #0.62, similar to the
slopes obtained at low q values when all displacements were
considered $Table I%. The induced linearity of the scaling
exponents indicates that those large excluded steps were re-
sponsible for the nonlinearity and originate from active pro-
cesses. That of course does not imply that the remaining
displacements, which are still superdiffusive, result from a
single transport mechanism.

The bilinearity of the scaling exponents suggests that par-
ticles experience local regimes of Brownian or confined mo-
tion separated by flights or jumps of enhanced diffusion
!13,19–22". Those events can, for example, be caused by
occasional dragging by motor proteins of from intermittent
collisions with $actively transported% adjacent vesicles and
organelles. Recently, a temporal analysis approach was intro-
duced, which identifies transient active phases in particle
transport, where the MSD scaling exponent is close to 2 and
the angle correlation function is close to zero, indicating di-
rectionality !1". When applying that analysis approach to our
data, only few particles exhibited any so-defined independent
active regimes. Hence, the flights here are not strictly ballis-
tic and directional but rather subballistic with a significant
underlying diffusive or subdiffusive component. Indeed, that
type of motion is often observed in our trajectories as dem-
onstrated by the inset of Fig. 2. In addition, the subballistic
flights lead to the #0.8 slope of the scaling exponents at high
moment orders, where in theoretical works, flights were bal-
listic, and scaling exponents had a slope of 1 at high q val-

TABLE I. Fits of scaling exponent, !$q%, for different particle types.

Probe particle

Fits of all displacements Fits of displacements
below 3" cutoff

0#q#8 a0#q#1.5 a 2#q#8 a

200 nm PEG $0.60$0.01%q $0.84$0.006%q-$0.44$0.02% $0.65$0.01%q
200 nm carboxyl $0.58$0.009%q $0.80$0.007%q-$0.43$0.03% $0.61$0.01%q
100 nm PEG $0.56$0.01%q $0.79$0.01%q-$0.33$0.05% $0.60$0.01%q
100 nm carboxyl $0.57$0.01%q $0.73$0.006%q-$0.24$0.007% $0.62$0.01%q
aErrors presented are standard errors obtained from linear fits of !$q% vs q, considering errors propagated
from fits of each moment vs. lag time. The R2 was at least 0.998 in every fit presented in the table.

FIG. 3. Scaling exponents of displacement moments, !$q%, as a
function of the moment order q. Data presented are for 200 nm
carboxyl-coated particles, representative of other particles. $a% Scal-
ing exponents obtained from all displacements at short lag times.
Fit lines are !$q%=0.58q at low q values and !$q%=0.8q−0.43 at
high q values. Error bars are on the order of the markers and were
omitted for clarity. $b% Only displacements below the 3" cutoff are
considered. When large displacements were excluded, !$q% was lin-
ear with moment order q. Slope is 0.62, similar to the slope ob-
tained at low q values without exclusion. Inset: Displacements %r at
lag-time 0.0833 s. Dashed line is at three standard deviations from
the mean, 3"=62 nm, typical displacements are below that value.
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Levy walks
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• Zarburdaev, Denisov, Klafter, RMP (2015)
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Model

• Pairs of IID RV (τi, vi).

• PDFs ψ(τ) and F (v).

t =
∑N
i=1 τi + τ∗

x =
∑N
i=1 χi + χ∗

χi = viτi
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Focus of this talk

• Moments of F (v) are finite and F (v) = F (−v).

ψ(τ) ∼ Aτ−(1+α)

|Γ(−α)| 1 < α < 2

• For Lorentz gas ψ(τ) ∼ τ−3.

• 〈τ〉 finite, variance of the waiting time diverges.
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Central Limit theorem arguments

• N ' t/〈τ〉 problem deals with summation of IID RVs?

x '∑N
i=1χi

• For 1 < α < 2 apply Lévy’s central limit theorem

χi = τivi.

• However competition between Lévy’s behavior and
ballistic tail, makes the problem interesting.

• Lévy’s CLT gives 〈x2〉 =∞, unphysical!
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Plan

• Obtain exact expressions for moments 〈xn(t)〉

• Use Montroll-Weiss equation and the Faa di Bruno
formula.

• Moment generating function (Fourier transform)

P (k, t) = 1 +
∑∞
n=1

(ik)n〈xn(t)〉
n!

• Sum the infinite series.

• Take the inverse Fourier transform.

• Get the long time limit of P (x, t)? NAIVE.
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Let’s do it

• For two state model F (v) = [δ(v − v0) + δ(v + v0)]/2

〈xn(t)〉 ∼ n
(n−α)(n+1−α)

A
|Γ(1−α)|〈τ〉(v0)ntn+1−α

• Summing the series

PA(k, t) ∼ 1 + t1−α A
|Γ(1−α)|〈τ〉f̃α(ikv0t),

f̃α(iy) =

y2
[

1
3−α 1F2

(
3−α

2 ; 3
2,

5−α
2 ; −y

2

4

)
− 1

2−α 1F2

(
1− α

2 ; 3
2, 2− α

2 ; −y
2

4

)]
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• Take the inverse Fourier transform

PA(x, t) = Ã
tα

∣∣∣ xv0t

∣∣∣
−(1+α) [

1−
∣∣∣α−1
α

x
v0t

∣∣∣
]

for 0 6= |x| < v0t

• Non-normalizable density. TRASH SOLUTION?

• Ballistic x/t scaling.

Ã = Aα/2v0〈τ〉 |Γ(1− α)|
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What do simulations say?
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infinite covariant density

Eli Barkai, Bar-Ilan Univ.



Infinite covariant density

• The Infinite covariant density (ICD)

limt→∞ tαP (x, t) = Icd(v) v ≡ x/t
• For example

Icd(v) = Kαcα|v|−(1+α)
[
1− α−1

α
|v|
v0

]

•

Two types of observables:
integrable (v2) and non-integrable (v0)

with respect to the ICD.

Kα = A〈|v|α〉| cos(πα/2)|/〈τ〉 cα = sin(πα/2)Γ(1 + α)/π.
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Fractional diffusion equation?

• Lévy’s central limit theorem implies that for the center
of the packet

∂Pcen(x,t)
∂t = Kα∇αPcen(x, t)

• Kα the anomalous diffusion coefficient can be used to
estimate the ICD.

• Observable integrable with respect to Lévy’s PDF, i.e.,
|x|q and 0 < q < α, is non integrable with respect to the
ICD.
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ICD is complementary to the central limit theorem

10
-1

10
0

10
1

x/t

10
0

10
3

I cd
(x

/t
) 

/ 
K

α
c α

jump model
velocity model (two state)
velocity model (Gaussian)
velocity model (exponential)

Icd(v) ∼ Kαcα|v|−(1+α) for v → 0.
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The Moments

〈|x(t)|q〉 =





M<
q tq/α q < α,

M>
q tq+1−α q > α.
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General formula for infinite density

Relation between the ICD and velocity distribution F (v)

ICD(v) = B
[
αFα(|v|)
|v|1+α − (α−1)Fα−1(|v|)

|v|α

]

where

Fα(v) =

∫ ∞

|v|
dv vαF (v)

B =
c̄αKα

〈|v|α〉.
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Summary

• Dual scaling implies active transport is both quasi
ballistic and super diffusive.

• Infinite density is complementary to the central limit
theorem.

• Two classes of observables integrable and non-integrable
with respect to infinite covariant density.

• Infinite densities describe statistics of a growing number
of physical models.
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Infinite ergodic theory

• Dynamical systems whose invariant measure is infinite.

• Transformations xt+1 = M(xt) with 0 < xt < 1.

• For example the Pomeau-Manneville map:

xt+1 = xt + (xt)
z mod 1, z ≥ 2

• Gives x0, x1, ....xt, .... deterministically.

• Exhibits, power law waiting times, 1/f noise
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Numerical estimate of infinite invariant densities: application to Pesin-type identity

Figure 1. t1�↵⇢(x, t) (see equation (6)) for the PM map with z = 3 (↵ = 0.5)
and a = 1. In simulations the times are t = 103, 104, 105 (in the figure from
bottom to top). Di↵erent initial conditions are used to illustrate that the infinite
density is not sensitive to the choice of initial conditions: solid line ⇢(x, 0) = 1 for
x 2 (0, 1), circles ⇢(x, 0) = 2 for x 2 (0.5, 1), squares ⇢(x, 0) = 2x for x 2 (0, 1). In
the limit t ! 1 the system approaches the infinite invariant density: the dashed
line ⇢(x) = 0.45x�1/↵, which is in good agreement with (8) and (9) without any
fitting. As follows from equation (7), equation (8) works for x � xc, where xc

is the crossover. For x ⌧ xc the finite time ⇢(x) is correctly described by the
second line of equation (7) (horizontal dotted lines with no fitting). As t ! 1,
xc = ↵↵t�↵ ! 0 and since ↵ = 1/2 we have ⇢(x) / x�2 when x ! 0, which means
the system approaches a non-normalizable state.

theorem [14] shows that (9) is valid for a large class of maps with a single unstable fixed
point on the origin, and which behave like M(xt) ⇠ xt + axz

t for xt ! 0.
Figure 1 demonstrates that when t ! 1 equations (8) and (9) describe the infinite

invariant density for the PM map. For finite time t and small x ⌧ xc we see deviations
in agreement with (7). Since our theory works for small x, not surprisingly (8) does not
work perfectly for x ' 1, though deviations seem small to the naked eye.

For the map (3) Thaler has found an exact analytical expression for its infinite
invariant density [14]

⇢(xt) = B
h
x�1/↵ + (1 + x)�1/↵

i
. (10)

Hence, unlike the PM map where we do not have an exact expression for the infinite
density, for the map (3) we can compare simulations with theory in the regime 0 < x < 1.
Since, as we mentioned for xt ! 0 this map has the same behavior as the PM map, the
constant B is given by (9). Note that the multiplicative constant B is related to our
working definition (6) (see further discussion below). In figure 2 we see that t1�↵⇢(x, t)
slowly converges towards the theoretical infinite density, besides the mentioned deviations
close to x ! 0. As we increase measurement time the domain x < xc, where deviations
from asymptotic theory are observed to be diminishing. In figure 3 we plot t1�↵⇢(x, t)

doi:10.1088/1742-5468/2013/08/P08010 5
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Ergodic theory

Time and ensemble averages are identical

lim
N→∞

N∑

t=0

O[xt]

N
→
∫ 1

0

O(x)ρ(x)dx.
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Infinite Ergodic theory

• Non-normalized invariant density, ρinf(x) ∼ x−1/α here
0 < α < 1 and α = 1/(z − 1)

∫ 1

0

ρinf(x)dx =∞.

• Observable integrable with respect to the infinite density

lim
N→∞

〈α
N∑

t=0

O[xt]

Nα
〉 →

∫ 1

0

O(x)ρinf(x)dx.

• Application of infinite density concept in physics?
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Things to do

• In experiment moment 〈|x(t)|q〉 has different time regimes, ballistic then
diffusive etc, so emphasize that qν(q) is found in long time limit (or show
the moments as function of time t).

• Define P (x, t).

• Take fig. from Denisov of trajectory of particle in infinite Lorentz gas. (see
above needss to be fixed).

• Emphasize that we take t → ∞ first (in calculation of moments) then obtain
infinite series which is summed and inverse Fouriered. Limits do not commute.

• Use fig. frorm PRE (not only x > 0).
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